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LETTER TO THE EDITOR

Nonlinear dynamics of a continuous spring–block model of
earthquake faults
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Received 13 October 1997

Abstract. The continuous one-dimensional Burridge–Knopoff model is generalized by
introducing plastic creep in addition to rigid sliding. The resulting equations, for an order
parameter (sliding rate) and a control parameter (driving force), exhibit a velocity-strengthening
and a velocity-softening instability. In the former regime, reminiscent of self-organized criticality
in continuum systems, anomalous diffusion is described by a nonlinear diffusion equation. The
latter regime, characteristic of deterministic chaos, is described by a time-dependent Ginzburg–
Landau equation. Implications of the model with respect to earthquake predictability are
discussed.

The dynamics of non-trivial spring–block models of earthquakes has regained attention since
Bak and Tang [1] argued that crustal faults may exhibit self-organized criticality (SOC). It
was shown that if stick–slip dynamics of a slowly driven system with threshold dynamics
is computed by a cellular-automaton algorithm the system self-tunes into a statistical steady
state with power-law correlations in time and in space [2–4]. These correlations compare
favourably to experimentally observed power-law correlations for earthquakes (for example,
to the Gutenberg–Richter law for the frequency distribution of energy release, or to the
Omori law for the distribution of aftershocks [5]).

While the SOC models are based onstrain softening(i.e. the threshold is defined by
a critical force in the force–strain characteristic), a complementary approach to obtaining
power-law scaling has been based on spring–block models involvingvelocity softening.
These models (both discrete and continuous versions), whose simplest form is known as
the Burridge–Knopoff (BK) model [6], generate stick–slip instabilities through a negative
velocity sensitivity of the dynamic fault friction. Power-law scaling is reproduced [7, 8] by
these deterministically chaotic models even in the absence of an explicit stochastic element in
the continuous differential equation: randomness is introduced only via the initial conditions.
However, recent investigations have shown that the solutions of BK models based on a
simple velocity-softening dynamic friction law eventually settle to periodic cycles of large
events [9].

We present a generalization of the continuous, one-dimensional uniform BK model.
The necessity of this generalization is motivated by physical arguments. (i) Since velocity
softening originates from fault aging by plastic accommodation (creep) of the fault interface,
it is not consistent to consider softening in terms of a phenomenological friction law
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without accounting for the time scale of aging [10]. In remedying this shortcoming
we shall introduce time-dependent (memory) friction. (ii) A significant fraction of the
imposed tectonic drift is accommodated by smooth creep deformation (aseismic slip),
while only some part (sometimes less than 1%) can be attributed to the abrupt strain
release during earthquakes (seismic slip). Understanding this observed seismic slip deficit
[11] and the concomitant intermittent behaviour (clusters of events separated by quiescent
periods) necessitates the consideration of creepand rigid sliding as concurring modes of
accommodation of the tectonic drift. (iii) An apparent dichotomy persists in the literature
regarding the concepts of strain softening (as envisioned by SOC models) and velocity
softening (BK model and its derivates). Since the dynamics of these classes of models
is qualitatively different, any progress may have important implications as to earthquake
predictability. In addressing this question we hope to contribute to the recent debate [12–14]
of continuum realizations of SOC.

The standard BK model of earthquake faults describes the dynamics of displacementsu

of a slowly driven spring–block chain of massesm in the presence of a nonlinear dynamic
friction 8 that generates a velocity-softening instability. The masses (of characteristic
extension ξ ) are longitudinally coupled by coil springs of stiffnesskl and they are
transversally coupled to the driving interface by leaf springs of stiffnesskt. Here we propose
to account for fault creep via the introduction of an internal variable. Specifically, under
the imposed driving the fault responds by a combination of rigid translationus (sliding)
and plastic displacementup (irreversible deformation by creep of some boundary layer of
the fault). In the continuum limit the corresponding equations of motion become (primes
denote spatial derivatives and dots time derivatives)

müs = F −8(u̇s+ u̇p) (1)

Ḟ = klξ
2u̇′′s − kt(u̇s− v̄)− F − Fy

τp
. (2)

The first equation describes balance of forces (Newton’s law) and the second the time
evolution of the driving shear forceF . The external loading rate isktv̄, where v̄ is the
tectonic drift velocity. The first term on the right-hand side of (2) arises from longitudinal
compression or tension, the second from elastic shear, and the last gives the force relaxation
due to plastic deformation under the assumption that the plastic displacement rate depends
linearly on the driving force,

u̇p = F − Fy

ktτp
for F > Fy. (3)

The critical force corresponding to plastic yielding is denoted byFy and τp is the
characteristic time of plastic relaxation of the shear forces (aging). In what follows we
neglectFy, without loss of generality.

In analogy to critical phenomena equations (1) and (2) may be interpreted in terms of
the coupled dynamics of acontrol parameterF (or the plastic displacement rateu̇p) and an
order parameteru̇s (the sliding rate). This compares with the proposed feedback mechanism
of Gil and Sornette [14]. Moreover, such a description is reminiscent of previous analyses
of laboratory friction data [15, 16] where a set of two coupled differential equations for
the friction stress, a parameter that characterizes the evolving state of the surface, and a
constitutive equation have been proposed. For the friction law of [17] and in the absence of
inhomogeneities (̇u′′s = 0) these equations may be rewritten in a form similar to ours: the
equation for the driving force (2) becomes identical, whereas the equation corresponding to
(1) contains additional nonlinearities [18].
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Figure 1. The nonlinear friction force assumed in the generalized BK model. Note the velocity-
strengthening and velocity-softening region, separated by the friction-force maximum8̂ at ̂̇u.
Typical positions of the diffusion-like and the oscillatory instabilities are shown. The aging and
the inertia regimes are presented for completeness.

A schematic diagram of the friction force8 we will be considering is shown in figure 1:
for small u̇ = u̇s+ u̇p fault creep is fast enough (time scaleτp) to maintain optimum surfaces
of contact which results in a positive velocity sensitivity of8. Velocity softening results
from incomplete fault accommodation occurring in an intermediate velocity range where
the displacement rates are compatible with the rate of aging. The velocity sensitivity turns
positive again at those high velocities where aging is negligible as compared to inertia. It
is important to note that8 defines the dynamic friction in the steady state, while velocity
changes are associated with transient effects as a consequence of memory friction [18].

Time and space are rendered dimensionless by definingt̃ = t/τp andx̃ = (kt/kl)
1/2x/ξ ,

while the dimensionless sliding rate is defined bye = u̇sτp/lp, the dimensionless shear force
by f = F/(ktlp), and the dimensionless friction force byφ = 8/(ktlp). By this scaling
we have introduced a characteristic length scalelp = τpv̄. In terms of the scaled fields,
equations (1) and (2) become

ε2ė = f − φ[v̄(e + f )] (4)

ḟ = e′′ − e − f + 1. (5)

Besides the set of constants defining the friction forceφ, equations (4) and (5) depend
on two parameters: the imposed drift velocityv̄ defining the ‘working point’ of the fault,
andε = (m/kt)

1/2/τp which is the ratio of the natural frequency of transversal oscillations
of individual blocks to the plastic relaxation time. It is tempting to identify theε → 0
(τp → ∞) limit as the standard, homogeneous BK model. However, inspection of the
scaling relations and equation (3) shows that the BK limit corresponds toτp → ∞ with
u̇p→ 0, namely creep is suppressed while the friction force remains constant. The natural
limit of equations (4) and (5) is to letε become small keeping the plastic displacement
rate u̇p fixed, since the plastic relaxation timeτp and the characteristic length scalelp go
to infinity at the same rate (for fixed̄v). The physical interpretation of this limit is that an
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increase of the plastic relaxation time is associated with an increase of the driving forceF

since force relaxation by creep becomes less efficient†. Consequently, the limit that gives
the standard BK model is not physically reasonable in our framework since the shear force
and the plastic relaxation time are interrelated (cf equation 3) [18].

In the case of smallε where friction dominates over inertial effects one can eliminate
adiabatically the fast variablee (the order parameteṙus). This yields the evolution of the
slow variablef (control parameterF )

ḟ = [D(f )f ′]′ − ∂f V (f ) (6)

D = 1

v̄
∂f ζ(f )− 1 V = 1

v̄

∫ f

0
dz ζ(z)− f (7)

where ζ is the inverse function ofφ, ζ(f ) ≡ φ−1(f ). Since the friction force is not
injective, ζ is defined only in the part of the aging regime where the slope of the friction
force is positive (cf figure 1). Equation (7) shows that for∂f ζ/v̄ < 1 (the friction-force slope
greater than unity) the diffusion coefficient becomes negative:D < 0 (uphill diffusion). As
the friction-force maximum̂8 is approached, however,D becomes singular (∂f ζ → ∞),
so that close tô8 the adiabatic approximation is expected to break down as the time scale
associated with diffusive relaxation of the control parameter vanishes.

It is apparent that thisdiffusion-like instability, which is not present in the original BK
model, contains many of the features previously attributed to SOC. It is characterized by an
uphill diffusion and, in the adiabatic approximation, the diffusion constant becomes singular
at the friction-force maximum̂8. Either criterion has been identified as characteristic of
SOC in continuum systems [12–14]. To make this point clear we consider figure 2 which
gives a schematic representation of the force dependence of (a) the coefficientD governing
the nonlinear diffusion and (b) the potentialV introduced in equations (6) and (7). On
the one hand, the uphill-diffusion regime (D < 0) mimics self-tuning, inasmuch as the
velocity field tends to fragmentize. Tentatively, we attribute this to microfissuration. On
the other hand, the singularity inD at 8̂ defines an unsticking threshold at which the force is
distributed instantaneously. Since the threshold is separated from the self-tuning regime by
a gap characterized by stable diffusion (D > 0), some element of randomness is necessary
to overcome the potential barrier and to trigger an event. Noise is supposed to be provided
by material inhomogeneities along real faults.

The nature of instabilities in equations (4) and (5) is elucidated by performing a linear
stability analysis of the uniform, steady-state solution(e0 = 1 − φ(v̄), f0 = φ(v̄)) to
infinitesimal perturbations [δe(0), δf (0)] exp(ωt + ikx). In doing so we have to distinguish
between ‘working points’̄v falling into the velocity strengthening regime at small velocities,
and those within the velocity-softening regime at intermediate velocities (the inertia
regime at high velocities is linearly stable, but unstable with respect to finite-amplitude
perturbations, cf figure 1). The roots of the characteristic polynomial are

ω± = 1

ε2
(µ± {µ2− ε2[1+ (1− φ(1)0 k2]}1/2) (8)

µ = −(ε2+ φ(1)0 )/2 φ
(n)

0 ≡ v̄n∂nv̄ φ(v̄). (9)

We identify two kinds of instabilities depending on the sign ofµ. For µ > 0 a transition
occurs from a stable focus to an unstable focus via aHopf bifurcation. The corresponding

† Clearly, the (theoretical) shear strength of the bulk material that constitutes the fault poses an upper bound to
the shear force. Here we consider the limitε � 1.
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Figure 2. An illustration of the force dependence of (a) the diffusion-like coefficientD and
(b) the potentialV introduced in equations (6) and (7). For a discussion, see text.

purely imaginary eigenvalues are

ω± = ± i

ε
[1+ (1+ ε2)k2]1/2 for µ = 0. (10)

This velocity-softening instability has been identified previously [7] in the standard BK
model, except that the introduction of plastic deformation shifts the instability to a finite
negative value of the steady-state velocity sensitivity (φ

(1)
0 < −ε2), cf figure 1. This is

a consequence of the stabilizing influence of the plastic deformation. Furthermore, by
an appropriate physical interpretation of the relaxation timeτp [18], the Hopf bifurcation
criterion can be mapped onto the criterion for stick–slip instabilities proposed by Ruina [15].

The dynamics of the system close to the oscillatory instability (in the post-bifurcation
regime) and the nature of the Hopf bifurcation are investigated in terms of a time-dependent
Ginzburg–Landau (TDGL) equation for a complex order parameterA [19]. This equation
is derived by introducing new variablesg = e + f − 1 andh = f − f0, and by expanding
the friction forceφ about the steady-state solution (g = 0) up to third order ing. Close to
the bifurcation point slow modes which govern the dynamics of the system are introduced
by scaling space and time according toX = x/ε andT = t/ε2, whereε is assumed to be
small. The reduced evolution equations derive in a standard way [18, 19] by performing an
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expansion of the solution vector in terms of the complex eigenvectors of the linear evolution
operator followed by an expansion in the small parameterµ that measures the distance to
the bifurcation point. This results in a TDGL equation which, expressed in a standard form,
is

∂T A = −i∂2
XA+ A− (1+ ic)|A|2A (11)

and which depends on a single dimensionless parameterc = 2(φ(2)0 )2/(3εφ(3)0 ) > 0 and
c real [18]. As the amplitudeA scales like 1/

√
µ it follows that the Hopf bifurcation is

supercritical (continuous transition), in agreement with experimental results on dry-friction
dynamics [20]. The constantc is positive (φ(3)0 > 0) because we may assume that the
inflection point inφ occurs at velocities larger than those that define the bifurcation point
(which is close to the maximum ofφ).

It is well known that equation (11) possesses a spatially uniform oscillating in time
solution A(T ) = exp(−icT ) that describes the motion on the limit cycle enclosing the
bifurcation point in phase space. This uniform motion is unstable with respect to finite
wavelength perturbations (sideband instability or modulational instability [21, 22]). The
associated eigenvalues read [18]

�± = −1± (1+ 2cK2−K4)1/2. (12)

For c > 0† the uniform state is unstable (�+ positive) in the range of wavenumbersK = εk
with 0< |K| < √2c with maximum growth occurring at|K| = √c.

Lorenz-type amplitude equations have been analysed to study the period-doubling
transition to chaos in the TDGL equation which is associated with the existence of a strange
attractor [22]. For the purposes of this work, it suffices to comment that the transition to
chaos depends sensitively on the friction force law (in particular, on the sign of the third
derivative).

In addition to the oscillatory instability, the original equations (4) and (5) exhibit a
velocity-strengthening instability occurring forµ < 0. Forφ(1)0 > 1 the second term under
the square root in equation (8) becomes positive, and an instability associated with small
wavelengths,k2 > (φ(1)0 −1)−1, appears. This instability has no analogue in the standard BK
model and it is closely related to the memory friction introduced in our generalized model.
Sinceφ(1)0 > 1 corresponds toD < 0 in equation (7), we identify it as thediffusion-like
instability that appeared in the analysis of the adiabatic elimination of the fast variable.

The identification of two distinct regimes in the generalized BK model presented herein
may have significant implications for the predictability of earthquakes. When the fault
operates in the velocity-strengthening regime at low velocities (tectonic drift velocityv̄ < ̂̇u),
one has aseismic slip most of the time while the diffusion-like instability coupled to internal
noise due to fault inhomogeneities gives self-tuning of the system to a state that has
some of the properties previously attributed to SOC states. This dynamics is infinite-
dimensional and hence prediction becomes impossible because small perturbations may
make parts of the system enter the intermediate velocity-softening regime leading to large
excursions and major events. This interpretation is in line with current ideas that earthquakes
are unpredictable [23]. Once the system is, however, in the velocity-softening regime,
the evolution becomes chaotic according to a low-dimensional deterministic dynamics.
Therefore, in principle, monitoring and time-series analysis of a small number of modes will
allow short-term forecasting (on a time scale governed by the largest Lyapunov exponent)
of the fault evolution during the aftershock dynamics. As we assume the initial working

† This condition may be considered a modified Newell criterion (cf [21, 22]).
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point to bev̄ < ̂̇u, the fault will ultimately return to the velocity-strengthening regime which
corresponds to the beginning of another seismic cycle.

We thank Dr D Wilkinson for his constant support that made possible the completion of
this work.
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